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Abstract – The performance of a tracking filter can be 
evaluated in terms of the filter’s optimality conditions. 
Testing for optimality is necessary because the estimation 
error covariance as provided by the filter is not a reliable 
indicator of performance, which is known to be 
“optimistic” (inconsistent) particularly when there are 
model mismatches and target maneuvers. The 
conventional root-mean square (RMS) error value and its 
variants are widely used for performance evaluation in 
simulation and testing but it is not feasible for real-time 
operations where the ground truth is hardly available. 
One approach for real-time reliability assessment is 
optimality self online monitoring (OSOM) investigated in 
this paper. Statistical tests for optimality conditions are 
formulated. Simulation examples are presented to 
illustrate their possible use in evaluation and adaptation. 
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1 Introduction 
From design, procurement, to deployment, performance 
evaluation remains one of the issues that target tracking and 
automatic target recognition (ATR) system engineers, 
government buyers, and systems operators must address in 
different phases of the systems’ life cycle. In design and test 
stages, performance evaluation is relatively easier not only 
because the ground truth is available, but also because the tests 
can be repeated. During deployment, however, the ground truth 
about a target can never be known a priori and there seldom 
exists a second chance in a time-critical hostile environment to 
verify algorithm performance.  

There are at least two types of performance evaluation. One is 
comparative (and competitive) among a variety of algorithms or 
designs wherein a set of performance metrics are used to rank the 
algorithms or designs for one-out-of-many selection. It typically 
requires the ground truth. In most cases, no single algorithm or 
design would prevail for all performance metrics and no single 
metric can capture all performance aspects under all conditions 
(i.e., scenarios). The other type of performance evaluation is 
absolute, which is concerned with a particular algorithm or 
design in run time. The second type of performance evaluation is 
the focus of this paper. 

Although comparative metrics can be used when the ground truth 
is available [4, 18], an alternative approach is to make use of 
design specs and optimality conditions as a means for 
performance evaluation. Indeed, modern target tracking and ATR 

system designs are model-based and they are optimized or tuned 
with respect to certain design criteria or cost functions. When the 
design conditions are met, the filter is expected to perform within 
specs. In a sense, each filter ought to have an optimality self 
online monitoring (OSOM) module to ascertain if the operation is 
optimal and if not, to provide timely feed back for online tuning 
and adaptation. In a sense, this forms a closed loop involving 
sensor management, thus related to such research areas as 
adaptive control and fault detection and isolation (FDI). 

This paper presents an OSOM system for target tracking filters 
and their fusion via adaptive sensor management. It monitors the 
optimality conditions of a tracking filter using statistical tests 
(e.g., normality and whiteness) based on the innovation sequence 
and relates the deviation from the optimal conditions to the errors 
developed in the target state. It can further calculate the actual 
process and measurement noise covariance matrices as compared 
to those used by the filter. Together with the sensitivity of 
optimality conditions with respect to various filter parameters 
(e.g., Q, R, P0), it enables on-line tuning or adaptation so as to 
maintain the optimality conditions.  

The paper is organized as follows. In Section 2, a typical tracking 
filter is described together with analytic performance prediction. 
In Section 3, a series of optimality tests are presented for 
performance monitoring. In conjunction with OSOM, methods 
for filter tuning, adaptive distributed fusion, and active sensor 
management are outlined in Section 4. Section 5 concludes the 
paper with some future work. Simulation examples are presented 
to illustrate the OSOM procedure in the paper. 

2 Tracking Filter & Performance 
Tracking filter design strikes a balance between noise 
performance and dynamic responsiveness to target maneuvers. 
Given the sensor error characteristics, the design boils down to 
the choice of covariance for process noise, which is a modeling 
tool widely used in the Kalman filter to deal with uncertainty. 
However, the estimation error covariance of the Kalman filter 
becomes inconsistent when large maneuvers occur. The sensor 
noise only covariance and steady-state biases or lags in position 
and velocity may be used instead. Design optimization then 
consists of finding the filter gain given the maximum possible 
maneuver that minimize the overall root mean square (RMS) 
errors [6]. 

2.1 Target & Measurement Truth Models 
Consider the following target model: 

)(1 kkkkkk vuGxFx ++=+
 (1a) 

kkkk wxHz +=  (1b) 
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where for the one-dimensional (1D) case (i.e., in one coordinate, 
say, the x-axis) the following variables and matrices are defined: 

[ ]T
kkk xx=x  (2a) 









=

10
1 T

kF  (2b) 

T

k TT








=

2

2

G  (2c) 

[ ]01=kH  (2d) 

T is the sampling interval, uk is an unknown deterministic 
acceleration input, vk is a random acceleration process with zero 
mean and variance σv

2, zk is the measurement, and wk is the 
measurement noise with zero mean and variance Rk = σw

2. 

2.2 Kalman Filter & α-β Filter 
Given the target motion and measurement models in (1) and (2), 
the corresponding Kalman filter consists of the time update 
(propagation) step (if uk is known): 

kkkkkkk uGxFx +=+ ||1 ˆˆ  (3a) 
2
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kkk ZE xx =  is the state estimate at time k with 

measurements up to k denoted by Zk = {z0, z1, …, zk}, 
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kkkkkkkk ZE +++++ −−= xxxxP  is the 
prediction error covariance, and the measurement update step: 

)ˆ(ˆˆ 1|1|| −− −+= kkkkkkkkk xHzKxx  (3c) 

1|| )( −−= kkkkkk PHKIP  (3d) 

where the Kalman filter gain is given by: 
1

1|
−

−= k
T

kkk k
SHPK  (3e) 

with the measurement prediction error covariance: 

k
T
kkkkk RHPHS += −1|

 (3f) 

In the steady state, the above Kalman filter for the motion and 
measurement models (1) and (2) becomes the so-called α-β filter 
with the constant gain denoted by: 

T

k T 



= βαK  (4a) 

where the gains are given by [2, 3, 10, 16]: 

)8)4(8(125.0 22 µηηηηα ++−+−=  (4b) 

ααβ −−−= 14)2(2  (4c) 

using the tracking index (target maneuverability index): 

w

vT
σ
ση 2=  (4d) 

which can also be viewed as signal to noise ratio (SNR), i.e., the 
position error caused by constant acceleration T2σv vs. the 
position measurement error σw. In the steady state, the transfer 
function from measurement zk to state estimate 

kk|x̂  is also the 
Wiener optimal filter. 

2.3 Analytic Performance & Design Analysis 
A Kalman filter in the steady-state (i.e., the α-β filter) can be 
viewed as a linear system and so is the truth model. Together, 
they are driven by random measurement noise, random 
acceleration input, and deterministic acceleration (maneuver) 
with unknown in time and magnitude. When uk = 0 and vk = 0, 
the state estimation error covariance position and velocity 
components contributed to by the sensor noise only (SNO) are 
given by: 
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which show the reduction of variances of the filtered state as 
compared to the variances of noisy measurements. Similarly, the 
state estimation error covariance position and velocity 
components contributed to by a constant acceleration of level A, 
when uk = A and vk = 0, are given by: 

22
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which are also called the acceleration-induced bias or lag in 
position and velocity, respectively. 

The random process noise is typically used to account for 
modeling error and uncertainty about target maneuver. When the 
system is subject to a random acceleration with zero-mean and 
variance σw

2, the state estimation error covariance position and 
velocity components contributed to by this random acceleration 
noise (RAN), when uk = 0, are given by: 
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which are the solution of the algebraic Riccati equation (3b) and 
(3d).  

The gains α and β can be related to the damping ratio ζ and 
bandwidth (undamped natural frequency) ωn for a continuous-
time filter [10, 24] by: 

2/2 ββζα −=  (8a) 
2)( Tnωβ =  (8b) 

)1(20,10 αβα −<<<<  (8c) 

The last condition (8c) ensures the filter stability. 

Combining (5) and (6) gives the maximum RMS errors in 
position and velocity errors: 

maxmax A
x

sno
xx PPRMS +=  (9a) 

maxmax A
x

sno
xx PPRMS +=  (9b) 

where Amax is the maximum possible acceleration level. 
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2.4 Illustrative Examples 
A target is stationary at xt = 0 from t = 0 to 200 sec. It then 
accelerates at ut = 5 m/s2 from t = 200 to 400 sec and next moves 
at the achieved velocity of 1000 m/s from t = 400 to 600 sec. It 
then decelerates at ut = -5 m/s2 from t = 600 to 800 sec and finally 
stops at xt = 400 km up to t = 1000 sec. The sampling interval is T 
= 1 sec. In addition to the deterministic input ut, a random 
acceleration vt ~ N(0, 0.12) (i.e., σv = 0.1 m/s2) is also used in 
some of the simulation examples presented below. 

The target is observed in position by a sensor with its 
measurement noise standard deviation being σw = 5 m. The initial 
estimation error covariance is P0 = diag([1002, 102]). The filter is 
initialized with a sample drawn from N{0, P0}. 

Fig. 1 shows the Kalman filter gain as a function of time vs. α 
and β calculated by (4). The position gain is slightly slower than 
the velocity gain but both converge to the steady state α and β 
within 50 seconds. For the particular design, the damping ratio is 
ζ = 0.6398 and the natural frequency is ωn = 0.1345 rad/sec or 
0.0214 Hz, which corresponds roughly to a time constant of 47 
sec for transient. 

Figs. 2 and 4 compare the RMS errors in position and velocity 
calculated from 50 Monte Carlo runs (blue), the filter provided 
error covariance (7) (green), and the predicted maximum errors 
(9) (red), respectively. The simulated RMS values (blue) match 
well with the filter predictions (green) in quiescent modes 
without maneuver, which are zoomed in Figs. 3 and 5. During 
maneuver, however, the filter predictions (green) remain flat (i.e., 
erroneous or inconsistent with the reality). In contrast, the 
maximum errors predicted from (9) (red) with Amax = ut = ±5 m/s2 
match well with the RMS errors (blue) over the maneuver 
periods. 

Figs. 6 and 7 show position and velocity errors, respectively, 
where a single run (red) is superimposed with the average (blue). 
Typical transient behavior for a 2nd order system is visible. The 
rising time is about 45 sec, consistent with the system bandwidth. 

Fig. 8 shows the innovation sequence, a single run (red) and the 
average (blue), with the predicted measurement error 2σ bounds. 
The blow-up is shown in Fig. 9 where the upper and lower 
bounds are in dashed green and red-colored, respectively. 

When vt = 0, the target is driven by the deterministic ut. The 
sensor noise only error predictions (5) are shown in Figs. 10 and 
11 for position and velocity, respectively. The sensor noise only 
error predictions (5) (dotted green) match well with the simulated 
RMS values (aqua) whereas the filter provided error covariance 
(7) (green) does not, which is pessimistic (higher than the actual). 
Fig. 12 shows the innovation sequence, which is well within its 
predicted 2σ bounds in quiescent modes but in maneuver periods. 

In the above simulation, the analytic formulas match well the 
numerical results, indicating their usefulness for performance 
prediction. However, when the actual value of σv, σw, and Amax 
differs from the one assumed in the filter, the actual tracking 
errors will be different from those given by the formulas. 

This is shown in Figs. 13 through 15 for the position error, 
velocity error, and innovation, respectively, where the filter uses 
(σw)model = 2×(σw)actual. As shown, the predicted values and 
bounds are larger than the actual ones. The filter is pessimistic or 
conservative. The opposite is also true when the filter uses values 
smaller than the actual (optimistic). In other words, the prediction 
will fail when there is a mismatch in model parameters. Hence, it 

is necessary for a filter to verify its design parameters in run time 
so as to ensure the operational optimality.  

3 Online Monitoring of Optimality   
The performance of a tracking filter is expressed in terms of 
various metrics. There metrics are evaluated over an observation 
interval, characterizing how far away the state estimate is from 
the true state in one way or another. Most of these metrics need to 
know the true state for their calculation. Such metrics are good 
for design simulation and test experiments where the true state is 
available. 

In this paper, we are interested in those metrics that can be 
implemented by a tracking filter without knowing the ground 
truth [19]. One approach is to explore the filter optimality. A 
well-designed (tuned) Kalman filter should provide an optimal 
estimate of the state (i.e., minimal error variance). A necessary 
and sufficient condition for a Kalman filter to be optimal is that 
its innovation sequence is zero-mean and white. 

As a result, these properties should be checked routinely to 
ensure that the filter is operating properly [7]. If so, the 
estimation error covariance can be trusted. If not, further tests are 
needed to determine what may go wrong (diagnosis) and on-line 
re-tuning may be necessary. 

3.1 Tests for Zero-Mean of Innovation Sequence 
We first consider a parametric test. When the innovation 
sequence is ergodic and Gaussian, the sample mean can be used 
to estimate the population mean as test statistic. Consider an 
individual component of the innovation denoted by e(k) = z(k) – 
z(k|k-1). 

Denote the true mean and covariance of the innovation by m and 
R. And denote the sample mean by m̂ , which is estimated by: 
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where N is the number of samples. Two hypotheses can be 
formulated as: 
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The probability of rejecting the null hypothesis H0 at the α 
significant level with threshold τ is given by: 
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The zero-mean test on each component of the innovation is 
formulated as: 
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At 5% significant level (α = 0.05), we have: 

N
R̂96.1=τ  (14) 

where the sample variance is estimated under the null hypothesis 
as: 
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304



0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

t, s

ka
lm

an
 f

ilt
er

 g
ai

ns

q
m

, r
m

, q
a
, r

a
 = 0.1, 5, 0.1, 5

 

 

position gain
velocity gain
alpha
beta/T

Fig. 1 Kalman vs. α−β Filter Gains 
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Fig. 2 Monte Carlo Position Errors  
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Fig. 3 Position Errors (Blowup of Fig. 2) 
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Fig. 4 Monte Carlo Velocity Errors 
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Fig. 5 Velocity Errors (Blowup of Fig. 4) 
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Fig. 6 Sample Behavior of Position Errors 
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Fig. 7 Sample Behavior of Velocity Errors 
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Fig. 8 Sample Behavior of Innovation  
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Fig. 9 Blowup of Fig. 8 
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Fig. 10 Position Errors with Sensor Noise Only 
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Fig. 11 Velocity Errors with Sensor Noise Only 
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Fig. 12 Innovation with Sensor Noise Only 
 
For nonparametric test, an asymptotic relative efficiency (ARE) 
[11] efficacious small-sample (≈ 10) robust (insensitive to 
outliers) nonparametric distribution-free linear rank test from the 
Chernoff-Savage class [8] for testing shift in location is the 
Mann-Whitney-Wilcoxon (MWW) two-sample statistics [11, 14]. 
Two independent random batch samples n and m are taken 
consecutively of the innovations sequence, representing 
populations X and Y, respectively, where the total number of 
samples N = m + n, the distribution model is 
FY(x) = FX(x – θ), and the null hypothesis of identical 

distributions H0 : θ = 0.  A symmetric version of the MWW [14] 
test is given by: 

)sgn(1
1 1
∑∑

= =

−=
m

i

n

j
ji yx

nm
W  (16) 

For selected small sample sizes, the cumulative density function 
(cdf) of W is tabulated. Thus a given value can be stored and 
compared with a threshold at given level of significance to accept 
or reject the null hypothesis. While the test requires ranking of 

305



the batched samples, for small sample sizes (m + n < 20) the 
computation time and delay incurred are very small. 

3.2 Measurement Screening and Dynamics Detection 
In order to both flag and eliminate measurement outliers Tukey’s 
method of Hinges [22] can be used to interpolate quartiles.  
Given a small, moving batch of ranked data samples, the median 
of the sample is computed. The data are divided into high and 
low groups, and the middle (median) values of the groups are 
denoted as Q1 and Q3, the first and third quartile, respectively. 
The inter-quartile range (IQR) is computed, i.e., IQR = Q3 – Q1. 
Next two “fences” are computed as Fence(lower) = Q1 – 1.5×IQR 
and Fence(upper) = Q3 + 1.5×IQR. Values outside the fences are 
considered outliers. To note, this test was used with great success 
in eliminating sensor caused outliers with real-time data [15]. 

The same method can be applied to the innovations sequence. In 
this case, values outside the fences can be used to detect dynamic 
changes not accounted for in the filter model. 

3.3 Tests for Whiteness of Innovation Sequence 
The parametric whiteness test is performed to check statistically 
that the innovation sequence is a white sequence. The sample 
covariance as a function of delays or lags is used as the test 
statistic. For a component of the innovation sequence, the sample 
covariance function is given by: 
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where ∆ = 0, 1, …, is the delay or lag of the covariance function. 
The normalized covariance test statistic is defined as: 
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For N > 30, the 95% confidence interval is N/96.1± . For ∆ = 0, 
ρ(k, ∆) = 1 so the interval is 1 N/96.1± . For ∆ ≠ 0, ρ(k, ∆) = 0 
so the interval is N/96.1± . Similar tests can be constructed for 
the cross-covariance properties between innovation components 
as well. 

A more efficient implementation of (16) is to use the fast Fourier 
transform (FFT) to compute the covariance. Furthermore, the 
autocorrelation function, R(τ), of the batch sequence can be used 
to compute the related  power spectral density, S(f), in order to 
gain an insight into the uniformity (or lack) of the shapes of S(f).  

A highly sensitive small sample nonparametric test for whiteness 
is the Shapiro-Wilk [8, 26] test with the null hypothesis that a 
sample x1, ..., xn came from a normally distributed population. 
The test statistic is: 
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where x(i) (with parentheses enclosing the subscript index i) is the 
ith order statistic, i.e., the ith-smallest number in the sample, x is 
the sample mean, the constants ai are given by: 
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where m = [m1, ..., mn]T with its elements being the expected 
values of the order statistics of independent and identically-
distributed random variables sampled from the standard normal 
distribution, and V is the covariance matrix of those order 

statistics. The user may reject the null hypothesis if W is too 
small. 

3.4 Tests for Zero-Mean White Gaussian Condition 

A simple statistic that contains all the innovation information 
over some finite window of length N is the weighted sum squared 
residual (WSSR) [7] defined as: 
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where p is the dimension of e(k) and S(k) is obtained from the 
Kalman filter. 

Under the Gaussian assumption for Np > 30, the threshold for a 
level of significance of α = 0.05 to accept the null hypothesis is: 

NpNp 296.1+=τ  (22) 

3.5 Skewness & Kurtosis 

When a Kalman filter operates correctly, the innovation sequence 
is white Gaussian of zero mean. The skewness and kurtosis can 
be used to characterize the deviation of the data sequence from 
the normality. 

Consider a random variable z. Its skewness and kurtosis are 
defined respectively as: 
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where mz = E{z} is the mean value of z. The denominator in (23) 
and (24) is the variance of z raised in power. 

The skewness characterizes the degree of asymmetry of a 
distribution around its mean value. A positive value of skewness 
corresponds to a distribution with an asymmetric tail extending 
on the right of the mean whereas a negative value indicates an 
asymmetric tail to the left. The kurtosis measures the relative 
peakednes or flatness of a distribution. 

For a Gaussian variable, both skewness and kurtosis are 
identically zero. So they offer a measure of the deviation from 
Gaussianity.  

3.6 Sequential Estimation of Noise Characteristics 

First and second-order moments of the noise processes can be 
estimated based on the state estimates produced by the Kalman 
filter, which provides a means to check on the filter modeling and 
its proper operation. 

Construct Nx samples of most recent state estimate errors: 

1|11|1|| ˆˆˆˆ −−−− −=−= kkkkkkkkkk xFxxxf  (25) 

If the system has an unknown constant forcing function, it can be 
estimated as 
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Similarly, a bias in the measurement can be estimated based on 
Nz most recent measurement prediction errors: 
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Fig. 13 Position Errors with Parameter Mismatch 
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Fig. 14 Velocity Errors with Parameter Mismatch 
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Fig. 15 Innovation with Parameter Mismatch 
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Fig. 16 Zero Mean Test 
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Fig. 18 Histogram of Innovation 
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Fig. 19 Histogram of Innovation in Maneuver 
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Fig. 21 Normalized Correlation Function 
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Fig. 22 Zero Mean Test (Sensor Noise Only) 
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Fig. 24 Correlation (Sensor Noise Only) 
 
It was shown that the bias estimators (26) and (27) are unbiased 
for optimal state estimates [23]. It was also shown that the 
following process noise covariance estimator is unbiased [12]: 

∑
=

+−+− −−
−

=
xN

j

T
kkjkkkjk

x
k N 1

''
1

''
1 ])ˆ)(ˆ[(

1
1ˆ uGfuGfQ

 ∑
=

+−−−− −−
xN

j
jk

T
jkjkjk

xN 1
1)(1 PFPF  (28) 

where 

1111
' ˆˆˆ −−−− −−= kkkkkk uGxFxf  (29a) 

∑
=

+−−− =
xN

j
jk

x
kk N 1

'
1

'
11

1ˆ fuG  (29b) 

The measurement noise covariance is estimated by: 
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3.7 Robust Statistics & Stochastic Approximation 
In addition to simple tests described above, more robust criteria 
can be used to estimate variance and correlation coefficients so as 
to make the results less insensitive to outliers and have smaller 
bias and variations [21]. Examples include the bi-weight method 
[22] and the square of the absolute median deviation for robust 
variance estimation [9, 22] and the rank correlation method for 
estimating correlation coefficients [9]. 

Stochastic approximation methods (SA) provide an online 
framework for robust non-parametric parameter estimation [13], 
system identification [1], and quantile estimation among others 
[25]. In particular, the Robbins Monroe SA and the robustized 
minimum variance least-square method can be used to estimate 
the quantiles of the innovations sequence. The quantiles can be 
directly related to the known properties of the Gaussian 
distribution. In conjunction with skewness and kurtosis, it allows 
characterizing the deviation of the data sequence from Gaussian. 

Computation of quantiles. It can be shown that to estimate 
quantiles of a distribution, the SA recursion is of the form [14, 
17]: 
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where Y is the data sequence, assumed to be i.i.d, Ap is an 
adaptive gain  matrix  (based on a nonparametric estimator)  and  
λk is the selected quantile to be estimated. Note that k quantiles 
can be simultaneously estimated by this procedure. Further note 
that the computation of the adaptive Ap requires batch processing 
and ranking incurring a small delay. Alternatively, a non-adaptive 
gain coefficient could be used without ranking. However, while 
streamlining processing it would not possess the robust properties 
of the adaptive SA.  

On-line density estimation. For recursive density  estimation, the 
SA procedure is modified to estimate  parameters of a non-
orthogonal basis function (translated Beta density function) 
approximation of  an arbitrary density function [14, 17]. The 
recursion in this case becomes: 
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where φ(w) is the translated Beta density function, and w are the 
i.i.d random samples from the distribution, and D is band matrix 
with 2k +1 nonzero diagonals given by dij = <φij, φ>. 

This method minimizes the integral square error between the 
“model” and the actual density to be estimated. A salient feature 
of this method is that it does not require storage or ranking and 
can be used directly on-line to estimate the “empirical” density 
function as function of time. The characteristics of the empirical 
density can be compared with respect to the normal density with 
deviations computed by methods as described above. 

3.8 Illustrative Examples 
The same simulation scenarios as in Section 2 are used here to 
illustrate optimality monitoring where the sliding a window 
length of 40 sec is used, which is roughly equal to the filter 

transient interval. Fig. 16 shows the test statistic of the zero mean 
condition for the innovation with upper and lower significant 
bands on the same plot. For a sample run, the condition is 
satisfied over the quiescent periods without maneuver. However, 
it is violated in all maneuver periods. 

Fig. 17 shows the skewness (blue) and kurtosis (green) estimated 
over each sliding window of innovations. After a transient, both 
estimates go down to small values. Right after a maneuver 
(initiation and termination), large values appear, indicating 
deviation from Gaussian. The signs of skewness are consistent of 
the directions of acceleration-induced biases. The kurtosis shows 
large concentration (value peaks) right after the initiation and 
termination of a maneuver. 

For a particular run, Figs. 18 and 19 are the histogram of the 
innovations in the quiescent and maneuver modes, respectively. 

Fig. 20 shows the χ2 test of the innovation, which satisfies the 
zero-mean white Gaussian condition in quiescent modes but 
violates it in maneuver modes. 

Fig. 21 shows the covariance function. For this particular data 
window, except for two small spikes, the covariance values at 
other lags are within the thresholds, indicating no correlation, 
thus white practically. 

The same simulation was run for the sensor noise only case 
where the random acceleration noise is set to zero vt = 0 with 
only deterministic acceleration left. Fig. 22 shows the test 
statistic of the zero mean condition for innovation with upper and 
lower significant bands. Fig. 23 shows the skewness and kurtosis 
estimates. Fig. 24 shows the autocorrelation function with upper 
and lower significant bands. 

The results are “cleaner” than the previous case with process 
noise and all the conclusions about the tests hold. 

Additional results for probability of detection and false alarm rate 
as well as latency of these and other test statistics will be 
examined in subsequent papers. 

4 Adaptive Fusion & Management 
In run time, a tracking filter needs to be prepared to handle 
possible changes in sensor error characteristics and target 
maneuvers, both leading to model mismatches and if not dealt 
with properly, would degrade the overall tracking performance.  

The optimality self online monitoring (OSOM) procedure 
described in Section 3 provides means to verify design 
assumptions and validate operating conditions. Any deviation 
from the optimality prompts actions. This may range from 
individual filter tuning, adaptive sensor fusion, active sensor 
scheduling and management, to network coordination. 

4.1 Individual Filter Tuning 
It is obvious that when the actual measurement error covariance 
R is found to differ significantly from the assumed value in the 
filter, the filter ought to be adjusted to reflect the new reality for 
better performance. 

The design procedure described in Section 2 factors in maximum 
possible maneuver but in a conservative manner. In contrast, 
proactive methods include reactive adaptation and multiple 
model estimation [3]. The former includes single filter 
adaptation, variable dimension filter, two-stage bias estimation, 
and input estimation. The latter is exemplified by the Multiple 
Model Adaptive Estimator (MMAE) [20] and Interacting 
Multiple Model (IMM) algorithm [5]. 
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4.2 Adaptive Fusion with Optimality Monitoring 
These maneuver adaptive filtering methods still experience biases 
or lags in position and velocity estimates after the initiation and 
termination of a maneuver, although reduced considerably as 
compared to non-maneuver filters. Such errors are primarily 
caused by transient behaviors. If these estimates are used in track 
fusion, the fused track may be “derailed” if different biases or 
lags from different sensors are not recognized. Since the 
optimality conditions no longer hold in the innovation, statistical 
tests similar to those for individual filters as described in Section 
3 may be developed to conduct fuser autonomous integrity 
monitoring (FAIM) to ensure consistent fusion. 

4.3 Sensor Management & Network Coordination 
One way to reduce transient errors is to obtain a direct estimate of 
the target maneuver and to correct the tracking filtering 
accordingly. In the past, change in target orientation from a 
sequence of visual images was used to deduce target maneuver 
[27]. Recently, range-Doppler images of a target from a high 
range resolution (HRR) radar are used to extract target maneuver 
information [28]. This involves change of sensor modes and 
coordination of multiple sensors from the same or different 
platforms. 

As described in this paper, the OSOM procedure is a bottom-up 
approach from individual filters through fusion centers to 
network managers, which will play a critical role for quality 
insurance in network-centric layered sensing. 

5 Conclusions 
In this paper, we reported our initial study of online monitoring 
of tracking optimality as means for performance evaluation and 
adaptation. The steady-state Kalman filter in one coordinate, i.e., 
the α−β filter, was used as an example for illustration. As shown 
by simulation, the tracking performance could be well predicted 
when the models were perfectly known. However, it failed when 
the filter models did no match reality. Various optimality tests 
applied to the innovation sequence could detect such conditions. 

The target state estimate and the corresponding estimation error 
covariance should be accompanied by an optimality indicator 
(consistency or integrity indicator) when it is used for track 
fusion, sensor management, targeting, and control. Our ongoing 
research in this direction seeks for fast and reliable indicators and 
metrics and their incorporation to target tracking, sensor fusion, 
and resource management algorithms. 
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